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INTRODUCTION 

Wolves (Canis lupus) were reintroduced into 2 areas in the southern portion of the northern Rocky 

Mountains (NRM) in 1995, and after rapid population growth were delisted from the endangered species 

list in 2011. Since that time, states in the NRM have agreed to maintain populations and breeding pairs (a 

male and female wolf with 2 surviving pups by December 31; USFWS 1994) above established 

minimums (≥150 wolves and ≥15 breeding pairs within each state). Montana estimates population size 

every year using patch occupancy models (POM; Miller et al. 2013; Rich et al. 2013; Bradley et al. 2015), 

however, these estimates are sensitive to pack size and territory size, and were developed pre-harvest. 

Reliability of future estimates based on POM will be contingent on accurate information on territory size, 

overlap, and pack size, which are expected to be strongly affected by harvest. Additionally, breeding 

pairs, which has proven to be an ineffective measure of recruitment, are determined via direct counts. 

Federal funding for wolf monitoring has ended in states where wolves are delisted, and future monitoring 

will not be able to rely on intensive counts of the wolf population. Furthermore, intensive, field-based 

monitoring has become cumbersome and less effective since the population has grown. With the 

implementation of harvest, predicting the effects of harvest on the wolf population and continuing to 

monitor the effectiveness of management actions is required to make informed decisions regarding 

hunting and trapping seasons.  

STUDY OBJECTIVES 

Our 4 study objectives are to: 

1. Improve estimation of recruitment. 

2. Improve and maintain calibration of wolf abundance estimates generated through POM. 

3. Develop a framework for dynamic, adaptive harvest management based on achievement of 

objectives 1 & 2. 

4. Design a targeted monitoring program to provide information needed for robust estimates and 

reduce uncertainty in the AHM paradigm over time. 

Two PhD students are addressing the 4 study objectives as part of Project 1 (Sarah Sells) and Project 2 

(Allison Keever; Fig. 1). 

DELIVERABLES 

1. A method to estimate recruitment 

for Montana’s wolf population that 

is more cost effective and 

biologically sound than the 

breeding pair metric (Project 2, A. 

Keever).  

Fig. 1. Objectives for this project are being addressed under 2 

separate projects.  



2. Models to estimate territory size and pack size that can keep POM estimates calibrated to 

changing 

environmental and 

management 

conditions for 

wolves in Montana 

(Project 1, S. Sells). 

3. An adaptive harvest 

management model 

that allows the 

formal assessment 

of various harvest 

regimes and reduces 

uncertainty over time to 

facilitate adaptive 

management of wolves 

(Project 2, A. Keever). 

4. A recommended 

monitoring program for 

wolves to maintain 

calibration of POM 

estimates, determine 

effectiveness of 

management actions, and 

facilitate learning in an 

adaptive framework 

(Projects 1 & 2). 

LOCATION 

This study encompasses wolf 

distribution in Montana and Idaho 

(Fig. 2). Additional data will 

come from Yellowstone National 

Park for the territory models 

developed under objective 2.  

GENERAL PROGRESS 

Projects 1 & 2, Year 1: We (S. Sells & A. Keever) started our PhD programs in January 2015 (Fig. 3). 

Much of year 1 was devoted to literature reviews on animal behavior, carnivores, modeling, optimal 

foraging, etc. and determining approaches for the dissertations. We also formed and held multiple 

Fig. 3. Project timeline. 

Fig. 2. The project study area includes wolf distribution in Montana and 

Idaho, as well as Yellowstone.  



meetings with our committees, worked on completing coursework requirements, and finalized research 

statements. Additional efforts focused on communicating with wolf specialists, identifying target packs 

for collaring, managing collar orders and data, and helping coordinate contracts and capture plans for 

winter aerial captures for January and February 2016. We also met with wolf specialists in the field to 

learn more about the wolves in each region, and coordinated and held meetings with the specialists to plan 

future project efforts.  

Project 1 (S. Sells): In year 2, I continued most activities from year 1, including conducting literature 

searches, taking classes, holding committee meetings, communicating with wolf specialists, managing 

collar orders, managing data, etc. I also began working on the theoretical territory models. My primary 

focus was meeting project and university requirements and deadlines, including defending my proposal 

and passing my comprehensive exams. I also joined the wolf specialists to assist with a month of 

trapping.  

Year 3 was primarily devoted to preparing the theoretical territory models. I presented draft results at 5 

conferences. In addition to completing more coursework, I continued working with MFWP and collar 

manufacturers as the point person on ordering collars, troubleshooting a growing set of issues with the 

collars, and managing collar records. I continued coordinating data management and collection from 

deployed collars and communicating with wolf specialists on all trapping and collar-related topics. I also 

spent 2 weeks assisting wolf specialists with trapping. 

In Year 4, I finalized the first-generation theoretical territory model and prepared drafts of the related 

manuscript for future publication. I attended an international training to learn the final steps for preparing 

and using individual-based models, which provide the foundation of my work. I also presented results at a 

national conference in the fall. I completed several steps towards building empirical territory models by 

preparing data, writing code, estimating territory sizes and locations for GPS-collared wolves from 2008 – 

2018, and running univariate analyses. I also completed work towards parameterizing the theoretical 

territory model; the outcome of this stage will be used to calibrate POM. I continued managing and 

adding to the wolf database for this project (including all GPS locations and their attributes), which will 

be sent to MFWP upon project completion. As in earlier years, I continued to serve as the point person for 

collar-related tasks, and spent 2 weeks assisting MFWP wolf specialists with trapping. I also completed 

my teaching requirements at the University by independently teaching an undergraduate course.  

Project 2 (A. Keever): In year 2 I continued literature reviews, completed coursework, and meeting 

university requirements. I defended my proposal and was studying for my comprehensive exams. Another 

focus was on the empirical recruitment model. I began developing the model that I had outlined in my 

proposal. I also spent 1 month assisting wolf specialists with trapping.  

Year 3 I completed the empirical recruitment model code and tested the model with simulated data. Much 

of my time was spent compiling and formatting the data needed to estimate recruitment. I presented 

preliminary results at 2 conferences. I also passed my comprehensive exams and spent 2 weeks assisting 

wolf specialists with trapping.  

In Year 4 I completed the empirical recruitment models and prepared drafts of the manuscript for future 

publication. I completed a simulation study to test the empirical recruitment model and evaluate data 



requirements. I began working on a draft manuscript of the simulation study for future publication. I 

began working on drafts of the theoretical recruitment models. I met with wildlife managers, area 

biologists, wolf specialists, and supervisors for each of the regions with wolves to determine objectives 

and alternative actions (harvest regulations) for wolf management. Additionally, I provided code for a 

Bayesian patch occupancy model to facilitate abundance estimation in the current POM framework. I 

completed teaching requirements for the University and spent 2 weeks assisting wolf specialists with 

trapping.    

Deliverables and updates: Project deliverables will include an empirical recruitment model; theoretical 

territory, group size, and recruitment models; draft and final AHM models; and final territory and pack 

size models. Additionally, it was agreed in 2017 that Project 1 would also provide empirical territory and 

group size models. We have been working on deliverables of the empirical recruitment model, theoretical 

recruitment model, and adaptive harvest management model (A. Keever) and the theoretical and 

empirical territory models (S. Sells) towards meeting objectives 1, 2, and 3. We each describe our 

progress towards these deliverables in subsequent sections of this report. (Additional details on objective 

4 are available in the 2016 report.)  
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PROGRESS ON OBJECTIVES 

OBJECTIVE 1: IMPROVE ESTIMATION OF RECRUITMENT—Allison Keever, Project 2 

1.1 Introduction 

Estimating recruitment (i.e., number of young produced that survive to an age at which they contribute to 

the population) of wolves is difficult because the size of the wolf population and limited time and funding 

for monitoring. Currently, MFWP documents recruitment based on visual counts of breeding pairs (a 

male and female wolf with 2 surviving pups by December 31; U.S. Fish and Wildlife Service 1994). 

These counts, however, are incomplete due to the large number of wolves in the population. Additionally, 

now that states fund their own monitoring programs, future monitoring will not be able to rely on 

intensive counts.  

Recruitment in wolves can depend on their social structure. Wolves are cooperative breeders, and pack 

dynamics (e.g., pack tenure, breeder turnover, and number of non-breeding helpers) can affect recruitment 

through pup survival (e.g., Ausband et al. 2015). Cooperative breeding often relies on the presence of 

non-breeding individuals that help raise offspring (Solomon and French 1997), and reduction in group 

size can lead to decreased recruitment in cooperative breeders (Sparkman et al. 2011; Stahler et al. 2013). 

Human-caused mortality through both direct and indirect means (Ausband et al. 2015) and prey biomass 

per wolf (Boertje and Stephenson 1992) have been shown to affect recruitment. As a result, it will be 

important to consider the effects of harvest, pack dynamics, wolf density, and prey availability on 

recruitment. 

Existing monitoring efforts yield insufficient data to estimate recruitment using traditional methods; 

therefore a new approach is needed that does not rely on extensive data. A breeding pair estimator 

(Mitchell et al. 2008) could be used to estimate breeding pairs, but requires knowledge of pack size; such 

data are hard to collect given the size of the wolf population. Additionally, the breeding pair metric is an 

ineffective measure of recruitment because it provides little insight into population growth rate or the 

level of harvest that could be sustained. Recruitment could be estimated by comparing visual counts at the 

den site to winter counts via aerial telemetry (Mech et al. 1998) or by marking pups at den sites (Mills et 

al. 2008). An alternative method could include non-invasive genetic sampling (Ausband et al. 2015) at 

predicted rendezvous sites (Ausband et al. 2010). These methods, however, may not be feasible on large 

scales due to budget and staff constraints.  

1.2 Sub-Objectives of Objective #1 

Developing methods to estimate recruitment with limited data relies on meeting 3 sub-objectives:  

1. Develop and test an empirical recruitment model. 

a. Test accuracy and precision of estimates generated by model. 

b. Provide understanding of how the social structure of wolves affects demography and 

estimation of recruitment. 

c. Evaluate data requirements of the method.  

2. Estimate recruitment of wolves in Montana. 

a. Provide estimates that are more biologically credible than breeding pair metric. 



b. Improve understanding of variation in recruitment. 

3. Develop and test theoretical models for recruitment. 

a. Reduce need for data to estimate recruitment. 

b. Improve understanding of variation in components of recruitment. 

 

1.3 General Approach 

We will develop an empirical recruitment model (hereafter ERM) using the framework of an integrated 

population model. Integrated population models can be a useful tool for demographic analyses from 

limited datasets, and can increase precision in estimates (Besbeas et al. 2002). Our goal is to estimate 

recruitment and evaluate factors that may cause spatial and temporal variation in recruitment. Our goal is 

also to conduct a simulation study to evaluate how many data are needed to reliably estimate recruitment.  

We will also develop theoretical models of recruitment to evaluate factors that cause variation in the 

components of recruitment. Recruitment depends on a pack’s success in breeding and giving birth, litter 

size, pup survival, and the number of breeders in a pack. We will use the theoretical models to test 

hypotheses about factors that affect the components of recruitment and produce predictions of patterns we 

would expect to see in recruitment of wolves.  

1.4 Develop and Test Empirical Model: Sub-Objective #1 

Introduction 

We used an integrated population model framework to estimate recruitment with limited data. Integrated 

population models generally use time-series count data to inform changes in abundance over time, mark-

recapture data to inform survival, and survey data to inform recruitment (Abadi et al. 2010; Schaub and 

Abadi 2011). With an integrated population model it is possible to estimate recruitment with only survival 

and count data, because changes in abundance over time contain information on changes in vital rates.  

Further, we adapted the integrated population model to account for the social structure of wolves. 

Traditional integrated population models inherently ignore social structure which can greatly affect 

demography (Al-Khafaji et al. 2009). For wolves, the population is a collection of packs and the packs 

themselves are a collection of individuals. Within a pack, wolves can survive, disperse, or be recruited. 

Packs similarly can go extinct (e.g., dissolve) and new packs can be formed. The processes that occur 

within a pack (e.g., dispersal) can affect the processes that occur among packs (e.g., pack formation).  

We conducted a simulation study to determine whether the ERM would be useful to estimate recruitment 

of wolves. For the model to be useful for monitoring wolves in Montana it needs to produce accurate 

estimates and require less field data (e.g., group counts and collars). The benefit of a simulation study is 

that we know the true number of wolves and their demographic rates, allowing us to compare estimates 

from the model to truth to assess accuracy. We also determined the accuracy of estimates with decreasing 

amounts of group count and collar data (i.e., considering a similar amount of data as collected in the past 

and less).  

  



 

Figure 1.1. Diagram of ERM model structure for wolves that accounts for the hierarchy of 

demography in wolf population dynamics. Blue circles represent processes that occur among 

packs and red circles represent processes that occur within packs. 

 

Methods 

Model structure 

We developed an ERM 

to estimate recruitment 

of wolves in Montana 

and evaluate factors 

causing spatial and 

temporal variation. To 

account for social 

structure of wolves we 

modeled the processes 

that occur within packs 

and the processes that 

occur among packs 

(Figure 1.1). We used 1) 

estimates of abundance from POM to inform changes in abundance over time, 2) estimates of 

colonization and extinction from POM to inform group formation and extinction, 3) group counts to 

inform changes in pack size over time, 3) GPS and VHF collar data to estimate survival, and 4) data from 

the literature to model dispersal (Jimenez et al. 2017). We ignored adoption of individuals into the pack 

because we assumed it was rare. Recruitment was the only parameter without data and could therefore be 

estimated.  

We used POM (MacKenzie et al. 2002; Miller et al. 2013; Rich et al. 2013) to estimate the area occupied 

by wolves and colonization and extinction rates. Using the mean territory size estimated by Rich et al. 

(2012) in 2008–2009, we estimated the number of packs by dividing area occupied by mean territory size. 

We estimated mean group size based on group count data (MFWP 2018), and multiplied mean group size 

by the number of packs to estimate abundance. Eventually, models from Objective 2 (territory and group 

size) could also be incorporated to improve estimates of abundance in the model.  

We estimated survival using a discrete-time proportional hazards model with a complementary log-log 

(cloglog) link function. We used 4 discrete periods for analyses: the denning period (April-May), 

rendezvous period (June-August), the hunting-only period (September-November), and the 

hunting/trapping period (December-March). GPS and VHF collared adult and yearling wolves from 2007-

2016 provided the known-fate data needed to estimate survival. We did not include wolves that were 

removed for livestock depredation in survival analysis as these have inherent sampling bias. We included 

a random year effect on survival to account for yearly variation. 

We modeled recruitment as the number of pups per pack using generalized linear models with a log link 

function. The linear predictor could then be described using covariates to test hypotheses about factors 

influencing recruitment. For the simulation study we included a random effect of year to account for 

annual variation.  

  



Table 1.1. Mean percent error and standard deviation of estimates from an integrated population 

model for recruitment (𝛾), mean group size (𝐺), abundance (𝑁), and survival (𝜙) from truth for a 

simulated wolf population with different amounts of collar and group count data. For number of 

collars it is the mean from all group count datasets and for group counts it is the mean from all collar 

datasets.  

Number of collars �̅� (𝑆𝐷) 𝐺 ̅(𝑆𝐷) �̅� (𝑆𝐷) �̅� (𝑆𝐷) 

10 29.5% (22.90%) 5.7% (3.05%) 9.9% (8.23%) 8.6% (6.46%) 

10 every 2 years 30.6% (26.35%) 5.7% (3.05%) 9.7% (8.02%) 11.3% (8.41%) 

10 every 5 years 55.1% (28.99%) 5.8% (3.06%) 8.9% (7.05%) 31.6% (21.58%) 

20 27.8% (22.08%) 5.7% (3.05%) 9.3% (7.95%) 8.1% (6.05%) 

20 every 2 years 30.7% (21.41%) 5.7% (3.05%) 9.4% (7.98%) 10.1% (6.97%) 

20 every 5 years 63.7% (29.36%) 5.8% (3.05%) 8.6% (7.68%) 36.3% (22.01%) 

Group Counts     

0 54.5% (33.27%) NA 15.9% (7.81%) 20.0% (18.64%) 

15 39.8% (29.75%) 5.8% (3.33%) 7.3% (7.36%) 19.5% (20.16%) 

25 40.8% (26.53%) 5.5% (3.15%) 6.7% (5.60%) 21.0% (20.13%) 

50 23.2% (13.78%) 5.9% (2.55%) 7.2% (6.16%) 10.2% (8.61%) 

 

 

Data simulation 

We simulated a wolf population for 15 years and then sampled from the population. We first generated 

100 wolf packs with group counts using a Poisson distribution with an average pack size of 7 wolves. We 

then randomly generated survival, recruitment, and dispersal rates using a uniform distribution with a 

range of biologically realistic rates for each year (Murray et al. 2010; Smith et al. 2010; Ausband et al. 

2015; Stenglein et al. 2015). This allowed for yearly variation in the demographic rates, which we 

recorded as truth. The simulated wolves in the initial 100 packs survived and reproduced based on these 

demographic rates. We included stochasticity using a Poisson distribution for reproduction and a binomial 

distribution for survival and dispersal. The number of packs was determined by generating random patch 

occupancy, colonization, and extinction rates from biologically realistic rates for each year and 

calculating the area occupied by wolves. We divided the area occupied by wolves by 600km
2
 (Rich et al. 

2012) to determine the number of packs for our truth to compare estimates to.  

We sampled group count data and estimates of mean group size from these packs. We added up the 

number of individual wolves in the packs to calculate true total abundance. We sampled from the 

individual wolves to create the collar datasets. We used different amounts of data from the simulated 

population to evaluate the amount of data needed to get reliable estimates of recruitment. For group 

counts we randomly sampled 50 packs per year, which represented the maximum amount of data 

collection that field biologists could realistically do each year (K Podruzny, pers. comm.). Additionally, 

we randomly sampled 25 and 12 packs per year to create datasets representing reduced monitoring effort. 

We added observation error to these counts so that the data were also a sample of wolves within the pack. 

Because the goal of 

MFWP is to expend less 

field effort for wolf 

monitoring, we also 

tested the model  

without any group data. 

This yielded 4 total 

datasets (50, 25, 12,  

and 0 pack counts per 

year). For collar data  

we sampled 50, 20 and 

10 wolves per year to 

generate known-fate 

observations. We then 

sampled and created 

datasets for 20 and 10 

collars every year, every 

2 years, and every 5 

years (6 datasets). We 

used every combination 

of the collar and group 

count datasets for a  



 

Figure 1.2. Estimates of recruitment in number of pups per pack that survive 1 year (orange circles) from an integrated population 

model compared to truth (blue circles) for a simulated wolf population with different amounts of group count and collar data. 

total of 24 scenarios. For each scenario we generated occupancy data by sampling 500 sites with 5 

occasions per year. We did not evaluate the amount of occupancy data needed to provide reliable 

estimates because those data are relatively inexpensive to collect and those methods have been used by 

MFWP since 2007. 

We estimated recruitment using the model for all 24 scenarios. We compared estimates of recruitment to 

truth and calculated the percent error for each of the scenarios. We used Markov chain Monte Carlo 

(MCMC; Brooks 2003) methods in a Bayesian framework to fit the ERM using program R 3.4.1 (R Core 

Team 2017) and package R2Jags (Su and Yajima 2015) that calls on program JAGS 4.2.0 (Plummer 

2003). We ran 3 chains for 100,000 iterations. We discarded the first 50,000 iterations as a burn-in period 

and used a thinning rate of 2. 

Results and Discussion 

The models for all scenarios using group count data converged and had Gelman-Rubin statistics < 1.1 for 

each parameter. The scenarios with 50 group counts were most accurate in estimating recruitment across 

collar datasets, and scenarios with 25 and 15 group counts were comparable in accuracy of estimating 

recruitment across collar datasets (Table 1.1). Recruitment estimates with 15 and 25 group counts and 20 

or 10 collars at least every 2 years were similar to recruitment estimates with 50 group counts and the 

same collar data (Figure 1.2). Models for scenarios without group count data (not accounting for social 

structure) had trouble converging, and those that did converge were less precise and accurate than 

scenarios with group counts. Survival estimates for scenarios with 10 or 20 collars at least every 2 years 

were accurate for all amounts of group count data, and survival estimates were only inaccurate for 10 or 

20 collars every 5 years and 25 group counts or less (Figure 1.3). Estimates of abundance were similarly 

accurate for all scenarios, however the scenarios without group counts were less precise.  



 

Figure 1.3. Estimates of survival (orange circles) from an integrated population model compared to truth (blue circles) for a 

simulated wolf population with different amounts of group count and collar data. 

Given our goal was to provide a method to estimate recruitment that is both biologically credible and cost 

effective, a main determinant of success would be the amount of data required. Simulations suggest that 

the ERM can be a viable method to estimate recruitment; however group count data greatly increase the 

precision and accuracy of estimates. There appears to be little benefit (accuracy of estimates) to increase 

monitoring efforts from 10 collars every 2 years and 15 group counts to 1) 20 collars every 2 years or 2) 

10 or 20 collars every year. Similarly, there appears to be little benefit (accuracy of estimates) to increase 

monitoring from 15 group counts and 10 collars every 2 years to 25 group counts with the same collar 

data. There was an increase in accuracy, however, with 50 group counts. As part of meeting deliverable 4 

(monitoring program), we will assess tradeoffs between resources spent collecting data and accuracy of 

estimates generated from those data. For example, accuracy is comparable between 10 collars every 2 

years and 20 collars ever year with 15 group counts. Therefore, the difference in cost would determine the 

best option.  

The other objective of this work was to provide a method that is more biologically credible than the 

breeding pair metric. The breeding pair metric estimates the probability a pack contains a breeding pair. 

Using the breeding pair metric a manager can determine how many packs recruited at least 2 pups and a 

minimum of recruitment, however the ERM can estimate the number of pups recruited per pack. Further, 

because the model was developed in a Bayesian framework we can estimate other derived quantities of 

recruitment such as the total number of pups recruited to the population. Future research could also 

evaluate the accuracy of these quantities of recruitment. We can also use the ERM to answer biological 



questions about variation in the number of pups produced per pack to improve understanding of wolf 

population dynamics.  

1.5 Estimate Recruitment in Montana: Sub-Objective #2 

Introduction 

Recruitment in wolves can be a driving factor of population growth. A pair of wolves that breeds 

produces an average of 4-6 pups per litter which can more than double the population (Fuller et al. 2003). 

Further, because pups tend to be the largest age class in the population (Fuller et al. 2003) future 

population size is mainly determined by pup recruitment. Variation in recruitment therefore can cause 

variation in population growth rate.  

We evaluated how recruitment in wolves varied across Montana. We tested the hypothesis that variation 

in recruitment of wolves was driven by intrinsic factors. Intrinsic factors at the pack-level such as pack 

size and composition can affect recruitment of pups (Ausband et al. 2017a; Ausband 2018). The number 

of non-breeding helpers in a group influences recruitment of young in many species that cooperatively 

breed, including wolves (Solomon and French 1997; Courchamp et al. 2002; Stahler et al. 2013; Ausband 

et al. 2017a). Therefore, we predicted that recruitment would be positively correlated with pack size. An 

intrinsic factor that could affect recruitment is density. Conspecific aggression can negatively affect 

survival (Cubaynes et al. 2014), which could decrease recruitment of pups directly or indirectly and we 

predicted a decrease in recruitment with population size. Gude et al. (2012) and Stenglein et al. (2015b) 

found evidence of density-dependence in recruitment, and density may be an important intrinsic factor 

driving recruitment. Accordingly, we predicted that pack size or population density would explain most of 

the variation in recruitment.  

Alternatively, we hypothesized that extrinsic factors drive variation in recruitment. If so, we predicted 

that winter severity, forest cover, road density, or harvest would explain most of the variation in 

recruitment. Forest cover is positively associated with occupancy of wolves (Rich et al. 2013; Bassing et 

al. 2018), and may be associated with security cover from humans (Llaneza et al. 2012). If so, we 

predicted that recruitment would increase with forest cover. A proxy for availability of prey could be 

winter severity. Winter severity (e.g., snow depth) increases the vulnerability of ungulates to predation by 

wolves (Huggard 1993; Post et al. 1999; Mech and Peterson 2003). Further, fluctuations in wolf 

populations have been linked, via fluctuations in prey, to fluctuations in winter severity (Peterson 1974; 

Mech et al. 1998; Mech and Fieberg 2015). If so, we predicted that winter severity would be positively 

correlated with recruitment. Harvest both directly and indirectly reduces recruitment (Ausband et al. 

2015, 2017a), and it could cause significant spatial and temporal variation in recruitment if harvest varies 

spatially or over time. Spatial variation in harvest may be difficult to quantify, however road density 

could be used as a proxy for spatial risk of harvest. Although wolves avoid high-use roads (Thurber et al. 

1994), low-use roads may be correlated with increased risk of harvest mortality by increasing access to 

hunters and trappers (Person and Russell 2008). We predicted that recruitment would decrease in years 

with harvest and in areas of increased road density.  

Methods 



 

Table 1.2. Deviance statistics (mean and standard deviation) and number of parameters (K) used for 

model selection to estimate recruitment of wolves in an integrated population model and test 2 

alternative hypotheses. We tested the hypothesis that recruitment in wolves was driven by intrinsic 

factors such as density-dependence (population size) or pack size. Alternatively we hypothesized that 

recruitment was driven by extrinsic factors including years with and without harvest, proportion of 

territory with forest cover, snow-depth for the previous water year, and density of low-use, 4-wheel 

drive and 2-wheel drive roads within the territory. Lower deviance suggest more model support, and 

we considered those within a SD of the top model to have support.  

Model Hypothesis K Mean SD 

𝛾 ~ 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑆𝑖𝑧𝑒 + 𝜏𝑌𝑒𝑎𝑟 + 𝜏𝑅𝑒𝑔𝑖𝑜𝑛 Intrinsic 4 21021.12 163.65 

𝛾 ~ 𝑃𝑎𝑐𝑘 𝑆𝑖𝑧𝑒 + 𝜏𝑌𝑒𝑎𝑟 + 𝜏𝑅𝑒𝑔𝑖𝑜𝑛 Intrinsic 4 21025.56 162.31 

𝛾 ~ 𝐻𝑎𝑟𝑣𝑒𝑠𝑡 + 𝜏𝑌𝑒𝑎𝑟 + 𝜏𝑅𝑒𝑔𝑖𝑜𝑛 Extrinsic; human 5 21026.36 162.51 

𝛾 ~ 𝐹𝑜𝑟𝑒𝑠𝑡 + 𝜏𝑌𝑒𝑎𝑟 + 𝜏𝑅𝑒𝑔𝑖𝑜𝑛 Extrinsic; prey 4 21642.61 162.51 

𝛾 ~ 𝑆𝑛𝑜𝑤 + 𝜏𝑌𝑒𝑎𝑟 + 𝜏𝑅𝑒𝑔𝑖𝑜𝑛 Extrinsic; prey 4 21920.63 1265.98 

𝛾 ~ 𝑅𝑜𝑎𝑑𝑠 + 𝜏𝑌𝑒𝑎𝑟 + 𝜏𝑅𝑒𝑔𝑖𝑜𝑛 Extrinsic; human 5 22247.85 167.08 

 

We used the ERM to estimate and evaluate variation in recruitment of wolves in Montana. We used three 

datasets that were available from ongoing monitoring in Montana: hunter surveys, global positioning 

system (GPS) and very-high-frequency (VHF) collars, and group counts. We used hunter surveys 

representing detection/non-detection data to estimate occupancy of wolves from 2007-2017 (see Rich et 

al. [2013] and MFWP [2018] for details). We used data for adult and yearling wolves collected by VHF 

and GPS collars deployed by MFWP biologists from 2007-2017. Group counts were collected by MFWP 

biologists annually. We used the end-of-year group counts from MFWP (MFWP 2018) for wolves in 

Montana from 2007-2017 that the biologists considered complete (i.e., designated as “good quality”).  

We classified low-use road density as either 4-wheel-drive or 2-wheel-drive roads (Rich et al. 2013; 

MFWP 2018) and calculated road density within a 600 km
2 
buffer around the pack centroid, which 

represented average territory size of wolves (Rich et al. 2012, 2013). We removed roads in areas with 

human population densities > 25 people/km
2 
because we assumed these represented high-use roads. We 

also calculated the proportion of the buffer covered by forest using ArcGIS (ESRI 2011). Forest cover 

was assessed by reclassifying 90 m
2 
land cover pixels into forest and non-forest (Gap Analysis Project, 

Wildlife Spatial Analysis Lab, University of Montana). Data for forest cover and road density were from 

2013, and we assumed this varied little over time. Harvest was a binary variable that was 1 in years with 

harvest and 0 in years without harvest. For winter severity we used the average daily snow depth for the 

previous water year (October 1 – September 30 the following year) from SNOTEL 

(https://www.wcc.nrcs.usda.gov/snow/). We used the log of estimated population size and pack size. We 

also included a random effect for the FWP region of the pack centroid and a random effect of year as 

covariates to account for additional spatial and temporal variation. We had 2 candidate models that 

represented the intrinsic hypothesis and 4 candidate models that represented the extrinsic hypothesis 

(Table 1.2), and selection was based on posterior deviance. We only considered univariate models 

because we did not have recruitment data and did not want to over-parameterize the model. We repeated 

analyses as detailed above to estimate recruitment for wolves in Montana. We ran 3 chains for 100,000 

iterations with the first 

50,000 discarded as a 

burn-in period and a 

thinning rate of 3. We 

monitored convergence 

using visual inspection 

of the MCMC chains 

and the Gelman-Rubin 

diagnostic (Gelman  

and Rubin 1992). All 

results are presented 

with mean and 95% 

credible intervals unless 

otherwise specified.  

Results and Discussion 

A total of 114 adult and 

yearling wolves (63 



 

Figure 1.4. Estimates and 95% credible intervals of survival for adult and yearling wolves in Montana 

from 2007-2016. Shaded areas on the graph represent years without harvest.  

females and 51 males) were collared from 2007 – 2016 that were not removed for livestock depredation. 

The wolves were captured in 72 unique packs with an average of 1.58 (SD=1.58) collared wolves per 

pack. Of these wolves, 49% were adults and 36% were yearlings. The age class of the remaining 15% was 

unknown. The number of collared wolves per year ranged from 14 in 2007 to 48 in 2016. Of the 114 

collared wolves, 46 had an unknown fate and were censored the time period of their last known location. 

Of those that were censored, 11% had the collar drop off and 22% had collar failure. The leading cause of 

death for the 50 wolves with documented mortality was legal harvest (n=24), followed by poaching (n=8). 

The remaining mortality was other human-caused mortality (n=6), natural mortality (n=6), and unknown 

cause of mortality (n=6). The average number of months a wolf survived was 24.2 (SD=11.74), and 

ranged from 2.2 – 67.4 months.  

We excluded 527 group count observations (44.2%) of the original group count dataset because they were 

not classified as “good” or “moderate” quality by MFWP biologists. The final dataset included 664 group 

count observations from 217 packs, 2007-2016. The mean observations per year was 66.4 (SD=18.1, 

range=34–94). On average, each pack had 3.09 observations (SD=2.13), with 1 pack contributing 10 

observations (i.e. 10 years of good or moderate quality counts). Average pack size for the 10 years was 

5.7 (SD=2.91), and ranged from an average pack size of 4.96 (SD=2.24) in 2016 to 7.03 (SD=3.13) in 

2007. During the period when wolves were listed under the ESA (2007-2008, 2010) average pack size 

was 6.6 (SD=3.30; n=139), and during the delisted period (2009, 2011-2016) average pack size was 5.5 

(SD=2.76; n=525).  

All models converged, with Gelman-Rubin statistics of <1.1 for all parameters. Parameters with Gelman-

Rubin statistics close to 1.1 had good mixing of chains with visual inspection of diagnostic plots. The 

model with the lowest mean deviance included a density-dependent effect (Table 1.2). Population size 

had a positive effect on recruitment. Two competing models were within the standard deviation of the top 

model: 1) pack size and 2) harvest. Pack size had a slight negative effect on the number of pups recruited 

per pack, however the effect size was small. There was a > 95% probability that population size decreased 

recruitment and > 

95% probability 

that pack size 

increased 

recruitment. There 

was an 88% 

probability that 

harvest had a 

negative effect on 

recruitment.  



 

Figure 1.5. Estimates and 95% credible intervals of recruitment (mean pups per pack that survive 1 year) 

for wolves in Montana from 2007-2016. Shaded areas on the graph represent years without harvest. 

Survival was greatest during years without harvest, and ranged from 0.70 (95% CI: 0.65-0.76) to 0.76 

(95% CI: 0.70-0.82; Figure 1.4). During years with harvest survival ranged from 0.59 (95% CI: 0.55-

0.64) to 0.68 (95% CI: 0.64-0.72). The estimated number of wolves increased slightly and became 

relatively stationary over time whereas the estimated mean pack size decreased. The mean number of 

pups recruited per pack was variable across years. Mean recruitment ranged from 2.16 (95% CI: 1.78-

2.55) to 3.26 (95% CI: 2.55-3.92; Figure 1.5). Future work will include estimates of the total number of 

pups recruited to the population in addition to the mean recruitment rate per pack.  

We found that the primary drivers of variation in recruitment was density dependence, pack size, and 

harvest. For every 10% increase in population size, per-pack recruitment is predicted to decrease by 1.3%. 

For each additional wolf per pack, recruitment is predicted to increase by 5%. Pack size was also the main 

factor driving breeding pair status of wolf packs in Montana (Mitchell et al. 2008). The credible interval 

for the effect of harvest on per-pack recruitment overlapped 0, but there was still a strong negative effect 

of harvest (88% probability). Years with harvest had an estimated 26% decline in recruitment. Mean 

recruitment in years without harvest was 3 pups per pack, and mean recruitment in years with harvest was 

2.2 pups per pack. These estimates align closely with findings in Idaho (Ausband et al. 2015). Future 

work could evaluate a quantitative measure of hunting and trapping that would provide more information 

for setting harvest regulations.  

Our estimates of recruitment, survival, and abundance were comparable to other studies for wolves. The 

number of pups recruited per pack varied little over time. Recruitment estimates for wolves in Idaho 

averaged 3.2 and 1.6 pups per pack to 15 months without harvest and with harvest, respectively (Ausband 

et al. 2015). Survival rate for wolves in the NRM prior to harvest implementation averaged 0.75 (Smith et 

al. 2010), which is comparable to estimates for wolves in Montana during years without harvest 

(mean=0.73). Similarly, survival rate for wolves in an unharvested population in Wisconsin was 0.76 

(Stenglein et al. 2015). Survival rates for wolves in exploited populations in Yukon and Alaska averaged 



0.56 and 0.59, respectively (Ballard et al. 1987; Hayes and Harestad 2000), which is similar to our 

estimates during years with harvest (mean=0.64).  

1.6 Develop and Test Theoretical Models: Sub-Objective #3 

Introduction 

Variation in recruitment is a result of variation in at least one component of recruitment (i.e., probability a 

pack successfully reproduces, litter size, pup survival, and the number of breeding females per pack). 

Many factors could cause these components to vary such as human-caused mortality, prey availability, 

multiple litters per pack, disease outbreaks, and group size. We will develop theoretical models of 

recruitment to explore variation in components of recruitment because there are few data to estimate the 

contribution of those factors to overall pup recruitment.  

The probability a pack successfully breeds could be influenced by survival of the breeding pair, time 

since pack establishment, food availability, wolf density, and pack size and composition (Fuller et al. 

2003; Mech and Boitani 2003; Brainerd et al. 2008). Litter size could be influenced by food availability 

and age of the breeding female (Boertje and Stephenson 1992; Fuller et al. 2003). Pup survival could be 

affected by pack size and composition, conspecific density, food availability, human-caused mortality, 

disease, litter size, and whether or not there was more than 1 breeding female (Fuller et al. 2003; Almberg 

et al. 2009; Ausband et al. 2017a; b). The number of breeding females per pack could be influenced by 

pack size and conspecific density (Ausband 2018).  

Understanding the factors that affect components of recruitment can help guide management actions. For 

example, if increased breeder mortality is reducing the probability a pack successfully breeds, and 

consequently recruitment, management could alter the timing of the season so it does not coincide with 

breeding. Conversely, if low food availability is decreasing pup survival different management actions 

might be taken.  

Preliminary Methods 

We will develop theoretical models to evaluate the effects of various factors on the components of 

recruitment. We will then estimate recruitment in packs as the product of the four components.  

We will develop models based on hypotheses about how the above factors affect recruitment. These 

models will generate predictions of recruitment if the hypothesis is correct. Using data from Idaho 

(Ausband et al. 2015), we will compare predictions of recruitment from the model to observed 

recruitment data. Data include information on breeding pair status and fate, number of non-breeding 

adults, number of potential recruits and number recruited, and harvest for 16 packs from 2008 – 2016. 

The model(s) that most closely predicts recruitment will be most supported. The model with most support 

can then be used to estimate recruitment of wolves in Montana. 

We will develop a baseline model, and predictions from the baseline model will serve as a comparison to 

predictions from other models. This baseline model will represent a null hypothesis that there are no 

factors that affect recruitment (i.e., mean rate with process variance).  



Discussion 

The empirical recruitment model provides more information about recruitment than the breeding pair 

estimator, but will require data to provide estimates. Although data requirements are less than current 

monitoring, a theoretical model may provide comparable accuracy and precision in estimates of 

recruitment with less data.  

We are currently developing hypotheses about factors affecting the components of recruitment 

(probability a pack breeds, litter size, pup survival, and number of breeding females). We will begin 

running analyses in March 2019 to generate predictions of recruitment.  
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OBJECTIVE 2: IMPROVE AND MAINTAIN CALIBRATION OF WOLF ABUNDANCE 

ESTIMATES GENERATED THROUGH POM—Sarah Sells, Project 1 

2.1 Introduction 

Monitoring is a critical yet challenging management tool for gray wolves. Monitoring results help MFWP 

set management objectives and communicate with stakeholders and the public. Monitoring any large 

carnivore is challenging due to their elusive nature and low densities (Boitani et al. 2012). This is 

particularly true for wolves in the Northern Rocky Mountains, as federal funding for monitoring has 

ended and a large population spreads monitoring efforts thin. Furthermore, there is frequent turnover of 

packs, and behavioral dynamics may have changed with harvest. 

Abundance estimates are a key component of monitoring (Bradley et al. 2015). Abundance is currently 

estimated in Montana using 3 parameters: area occupied, average territory size, and annual average pack 

size (Fig. 2.1, Bradley et al. 2015). Area occupied is estimated with a Patch Occupancy Model (POM) 

based on hunter observations and field surveys (Miller et al. 2013, Rich et al. 2013, Bradley et al. 2015). 

Average territory size is assumed to be 600 km
2
 with minimal overlap, based on past work (Rich et al. 

2012). Annual average pack size is estimated from monitoring results. Abundance is then calculated as 

the number of territories estimated within the area occupied, multiplied by the average pack size.  

Whereas estimates of area occupied from POM are expected to be reliable (Miller et al. 2013, Bradley et 

al. 2015), reliability of abundance estimates hinge on assumptions about territory size and overlap 

(Bradley et al. 2015). Assumptions of a fixed territory size with minimal overlap are simplistic; in reality, 

territories vary spatiotemporally (Uboni et al. 2015). This variability is likely even greater under harvest 

(Brainerd et al. 2008). Furthermore, estimates of mean territory size were largely derived pre-harvest 

(Rich et al. 2012). If average territory size has changed, abundance estimates would be biased. Similarly, 

at finer spatial scales (e.g., at regional 

levels), where territory sizes are 

smaller than average, abundance 

estimates would be biased low, 

whereas the opposite would be true 

where territories are larger than 

average. Variations in territory 

overlap would similarly bias results. 

Estimates of abundance also hinge on 

assumptions about pack size (Bradley 

et al. 2015). Pack size estimates 

require packs to be located and 

accurately counted each year, which 

is no longer possible due to the large 

number of packs and declining 

funding for monitoring (Bradley et al. 

2015). Since implementation of 

harvest in 2009, several factors have 

 

Figure 2.1. Example of POM results (red indicates highest occupancy 

probability, green lowest), and methods for calculating abundance. Graphed 

abundance estimates are based on minimum counts (black bars) and POM-based 

estimates (white bars). (Adapted from Bradley et al. 2015.) 
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further compounded these challenges and decreased accuracy of pack size estimates. First, whereas larger 

packs are generally easier to find and monitor, average pack size has decreased since harvest began 

(Bradley et al. 2015). Difficult-to-detect smaller packs may be more likely to be missed altogether, 

biasing estimates of average pack size high. Conversely, incomplete pack counts, especially for larger 

packs, could bias estimates of average pack size low. Harvest and depredation removals also affect social 

and dispersal behavior (Adams et al. 2008, Brainerd et al. 2008, Ausband 2015) and therefore further 

influence pack size.  

Development of reliable methods to estimate 

territory size, territory overlap, and pack size 

could improve accuracy and precision of 

abundance estimates. In addition to pack 

counts, monitoring has relied on deploying 

collars; this is increasingly challenging and 

costly due to difficulty of capture and 

frequent collar loss caused by collar failures 

and mortalities (Table 2.1). Given these 

challenges, the fact that federal funding for 

wolf monitoring has ended, and the number 

of packs to be monitored, there is need for 

new methods that reduce monitoring 

requirements and enable estimating territory 

size, territory overlap, and pack size. 

Furthermore, these methods would ideally 

help keep estimates from POM calibrated into 

the future, which could be achieved by 

developing methods to predict behavioral 

changes under a wide range of potential 

future conditions.  

2.2 Sub-Objectives of Objective #2 

Improving and maintaining calibration of wolf abundance estimates generated through POM relies on 

multiple sub-objectives: 

1. Develop theoretical and empirical models for territory size:  

a. Improve reliability of abundance estimates from POM. 

b. Eliminate the assumption that there is a single, fixed territory size statewide to enable 

predicting abundance at finer spatial scales (e.g., regional levels).  

c. Provide understanding of how territory size, overlap, and location will vary under 

potential future conditions (e.g., with increasing harvest or ungulate populations).  

d. Reduce the need for data (e.g., trapping, collaring, etc.) to keep POM calibrated into the 

future. 

2. Develop theoretical and empirical models for group size:  

a. Improve reliability of estimates from POM.  

Table 2.1. GPS collars deployed by MFWP on wolves (primarily in 

conjunction with this research) by year, and recorded numbers of collar 

failures and mortalities, as of February 2019. Collar failures include 

those missing (no fixes and no VHF signal), with outcome unknown. 

Cause of mortalities included harvest, poaching, depredation removals, 

vehicles, and conspecific aggression. Outcomes did not always occur 

the year of deployment, but nearly all failures and mortalities occurred 

< 2 years after deployment. 

 

Year Collars 

Deployed 

 

Outcome 

 

  % Failed & 

MIA 

% 

Mortality 

%  

Other 

2014 11 9.1 27.3 63.61 

2015 14 28.6 57.1 14.32 

2016 29 51.73 48.3 0.0 

2017 18 38.9 50.0 11.14 

2018 20 10.0 50.0 40.04/5 

Total 92 31.5  47.8 20.7 

1. Collars were retrieved after dropping off as programmed. 
2. Collars were swapped when wolf recaptured. 

3. Includes 1 collar drop-off. 

4. Collars remain functional and deployed. 
5. Two additional collars appear to be in the process of malfunctioning (no 

recent fixes; 3 months w/o fixes demarcates failure). 

 



b. Eliminate the need for extensive monitoring of annual pack sizes.  

c. Provide understanding of how group sizes will vary under future conditions. 

3. Incorporate territory and group size models into POM: provide MFWP with the tools for 

estimating abundance of wolf packs and individuals.  

These sub-objectives will also contribute to the Study Objectives #3 & 4, developing an adaptive harvest 

management model and a recommended monitoring framework for MFWP. 

2.3 General Approach 

Our approach employs both theoretical and empirical models to evaluate the advantages, trade-offs, and 

appropriate applications of each. As theoretical and empirical approaches are complementary, using both 

will help maximize understanding of behavior. This in turn will provide models that can calibrate POM 

now and into the future while reducing the need for intensive monitoring efforts. A theoretical approach 

provides a means to test hypotheses about mechanisms driving behavior, such as why wolves select 

certain areas for their territories. If natural selection has sufficiently shaped mechanisms driving territorial 

or social behavior to be broadly consistent across space and time, a theoretical model based on these 

mechanisms can be useful across spatiotemporal extents. For example, harvest management may vary 

over time, as will ungulate populations. Through simulations, theoretical models can predict behavior 

across a full range of potential conditions that could be encountered now or in the future (Fig. 2.2). The 

empirical models will also reveal important patterns in territories and social behavior of wolves in 

Montana. The empirical models are likely to be reliable for the time and place they are developed (i.e., 

from recent monitoring and collaring efforts; Mitchell and Powell 2002). They can help evaluate the 

predictions and reliability of the theoretical models, and be applied alongside the theoretical models to 

calibrate POM. We will discern and provide recommendations on the appropriate applications for each. 

We are developing and testing the models in multiple phases, starting with the territory model. Phase one 

(Sect. 2.4) is to develop a theoretical territory model and generate predictions of what should be observed 

empirically if our hypotheses for territory selection have support. Phase two (Sect. 2.5) is to develop 

empirical models to summarize patterns in territory sizes of wolves in Montana. Phase three (Sect. 2.6) is 

to compare the two approaches and produce final tools to calibrate POM.  

Phase one of the territory model is complete, 

and phases two and three will soon be 

completed. We will repeat this three-phased 

approach for the group size models. The 

group size models will use the same 

techniques and much of the same data as the 

territory models. We have acquired the 

training and experience to code the theoretical 

models, and have collected and prepared the 

empirical data necessary for the group size 

models. Accordingly, development of the 

group size models will be greatly accelerated.  

 

Figure 2.2. Inferences (e.g., about the effects of harvest on territory 

size) that might be drawn from an empirical study are reliable for the 

time and place from which empirical data were derived. A theoretical 

model can be used to simulate, test, and draw inferences from the full 

range of possibilities. Both approaches are complementary.  

 

 



2.4 Territory Models: Phase One 

Introduction  

The goal of developing a theoretical territory model is to help calibrate POM by increasing understanding 

of how and why territories vary over space and time. This variation could arise based on the conditions 

wolves encounter when selecting and defending territories, such as those related to food resources, 

competition, and humans. Accordingly, understanding these effects could help estimate how and why 

territory size will vary in space and time. This information can in turn be used to calibrate POM. A 

theoretical model can generate predictions, based on the model’s hypotheses, for what should be observed 

empirically if the model suitably captures the mechanisms driving territorial behavior. Suggesting 

potential utility of this approach, a similar approach was previously shown to be useful for understanding 

and predicting animal space use (Mitchell and Powell 2004, 2007, 2012). 

Based on theoretical and empirical precedent, we hypothesized that wolves select territories economically 

to obtain sufficient resources for survival and reproduction, based primarily on the benefit of food 

resources (Brown 1964, Hixon 1980, Carpenter 1987, Adams 2001) and costs of competition (Brown 

1964, Hixon 1980, Carpenter 1987) and travel (Mitchell & Powell 2004, 2007, 2012). This Base 

Hypothesis (𝐻𝐵) provided predictions that should be observed empirically if our understanding of 

territory selection is correct.  

Understanding how food resources might affect territorial behavior could help calibrate POM. Based on 

𝐻𝐵, we hypothesized that if food resources are the primary benefit to territory selection, their 

heterogeneous distribution and abundance will affect territory selection. We thus simulated territory 

selection in landscapes with various distributions and abundances of food resources. This was important 

because a model for territory selection should be able to replicate observed relationships between food 

resources and territory size.  

Understanding how intraspecific competition affects territorial behavior could also help calibrate POM. 

We hypothesized that if the cost of competition is inherent to territory selection, conspecific density will 

have important effects. We therefore simulated territory selection at a range of population densities to 

understand how competition could affect territory size and overlap. 

Resource requirements could also have important effects on territory selection (e.g., if large or small 

packs have different resource requirements). We simulated territory selection for different levels of 

resources to understand how selection may differ if resource requirements vary. This also provided a 

means to evaluate robustness of predictions to varying resource requirements.  

Understanding the effects of predation risk could help calibrate POM, because predation risk could drive 

territory selection for some populations (Sargeant et al. 1987, Whittington et al. 2005, Rich et al. 2012). 

Accordingly, we developed a variation of 𝐻𝐵 to include the cost of predation risk (𝐻𝑃). Predation risk for 

wolves is primarily associated with humans; therefore, the risk of harvest by humans could affect territory 

selection. Similarly, this cost may not be a driver in areas of limited or no harvest, such as in Yellowstone 

National Park (YNP).  

  



Methods 

We developed a mechanistic, spatially-explicit individual-based model (IBM) for territory selection in the 

program NetLogo 6.0 (Wilensky 1999). We simulated landscapes to represent a range of conditions that 

could be encountered by wolves, and simulated territory selection by instructing simulated wolves 

(agents) to select territories.  

Landscapes 

We represented each 

landscape as a continuous 

grid of 200 × 200 patches 

(Fig. 2.3). Each patch varied 

by its food resources (𝐵) and 

predation risk (𝑃). 

Landscapes varied in overall: 

1. Food distribution: 

the spatial 

distribution of 

patches with high 𝐵 

(evenly distributed, 

moderately clumped, 

or highly clumped). 

2. Food abundance: 

landscape-wide Σ𝐵 

(low, medium, or 

high, and = across 

food distributions).  

3. Predator abundance: 

landscape-wide Σ𝑃 (low, medium, or high).   

Agents  

Agents represented different packs. In any given simulation, agents were assigned a threshold of 

resources they required for survival and reproduction (low, medium, or high).  

Territory selection 

For each simulation, the model cycled through a series of processes (Fig. 2.4) through which territories 

and competition among agents emerged on the landscape (e.g., Fig. 2.5). Agents were added to the 

landscape one by one, representing dispersal of an agent in search of a territory. A territory was 

established for the agent by identifying patches of high value, based on selection algorithms representing 

hypotheses 𝐻𝐵 and 𝐻𝑃 (Appendix A). If an agent’s territory overlapped another or patches formerly 

shared were later abandoned, territories for affected agents were shifted if economical to do so. Effects of 

competition were thus dynamic (i.e., changed throughout the simulation) and density dependent.  

 
Figure 2.3. In phase one of the theoretical territory model, each simulated landscape was a 

grid of 200 × 200 patches. Each patch varied in its benefit of food (𝐵) and presence of 

predators (𝑃). Entire landscapes varied in overall distribution and abundance of food and 

abundance of predators, i.e., in the spatial distribution and sum of 𝐵 and distribution of 𝑃. No 

2 landscapes were identical.  

 



  

 

Figure 2.4. The theoretical territory model employed a cycle of processes (Appendix A). After the landscape was created, an 

agent was added. A territory was established for the agent by identifying patches of high value. The number of territories 

gradually increased as more agents were added to the landscape. If an agent’s territory overlapped another or patches formerly 

shared were later abandoned, territories for affected agents were shifted if economical to do so. Effects of competition were thus 

dynamic (i.e., changed throughout the simulation) and density dependent.  
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Figure 2.5. As an example of a simulated landscape where agents formed territories in the theoretical territory model, Panel A  

shows the food-benefit of patches; Panel B shows 71 resulting territories (mean size of 371 patches, range 266 – 670).  

 



Analyses  

Throughout the simulation, for each agent we measured territory size (# of patches), overlap (proportion 

of the territory shared with >1 agent), and competitor pressure (# of territories present at territory 

establishment). At the end of each simulation, we measured the landscape’s territory abundance 

(representing a saturated population) and each agent’s final territory size and overlap. 

We summarized results with program R (R Core Team 2018). We calculated mean territory size and 

overlap across independent variables (e.g., food distribution, food abundance, predator abundance, etc.) 

for low density and saturated populations. We summarized the initial and final territory size and overlap 

in relation to competitor pressure.  

Results and Discussion 

Agents formed >174,000 

simulated territories in total, 

the summaries of which 

provide predictions for what 

should be observed 

empirically if our 

hypotheses have support. 

For brevity here, we report 

the primary patterns 

predicted by the model. Full 

detail will be presented in 

an upcoming manuscript.   

Effects of food resources  

Food resources are 

predicted to strongly affect 

territory size and overlap, 

demonstrating how 

differences in prey 

populations could affect the 

size and overlap of wolf 

territories in Montana. This 

in turn could have 

important implications for 

POM. More clumped or 

abundant food resources are 

predicted to result in 

smaller territories (Fig. 2.6). 

Fluctuating prey 

populations could thus 

 

       ED = Evenly distributed        Lo = Low 
    MC = Moderately clumped                     Md = Medium 
        HC = Highly clumped       Hi = High 

 

Figure 2.6. Results from phase one of the theoretical territory model. Territory size (# of 

patches) and overlap (proportion of the territory belonging to >1 agent) varied in response to 

food distribution (left panels), food abundance (right panels), population density (columns),  

and resource threshold (shapes). 

 



cause territory size to also fluctuate, with could affect accuracy of yearly abundance estimates from POM. 

At high population densities (i.e., likely for many packs in Montana today), overlap is predicted to be 

greater where food resources are more clumped, and to vary less across food abundances. Additionally, 

territory sizes and overlap are predicted to vary widely among packs, particularly under certain prey 

distributions and abundances (Fig. 2.7). Carrying capacity is also predicted to be higher where food 

resources are more clumped or abundant (Fig. 2.8). These predictions indicate that the density of 

territories may be greatest in areas of Montana with high prey abundance arranged in more clumped 

distributions. Territories in these areas, however, may also demonstrate the largest variation in size.   

Emergence and effects of competition 

Competition among packs is predicted to strongly affect territory size and overlap, which could affect 

accuracy of abundance estimates from POM. Competition is predicted to affect the variation in territories 

among packs. For each new territory formed, its size and overlap at establishment are predicted to be on 

average greater than that of its predecessors (Fig. 2.7). This pattern in territory size is predicted to remain 

consistent as population density increases, and suggests that the newest territories formed in Montana 

may be among the larger observed. As an exception, however, where food is evenly distributed, new 

territories are predicted to be smaller at establishment than those of predecessors.  

Overlap is also predicted to vary across packs (Fig. 2.7). In high-density populations, territories that were 

established either relatively earlier or later in time are predicted to have the most overlap, whereas those 

 

Figure 2.7. Results from phase one of the theoretical territory model. Competitor pressure (the number of agents at the time of 

territory establishment) affected territory size (# of patches) and overlap (proportion of the territory belonging to >1 agent). Effects 

varied by food distribution (panels) and abundance (colors). In A, lower panels (% change) depict the change in territory size as 

competition increased, i.e., from the initial territory selected at time of establishment to the final territory at the end of the 

simulation. In B, lower panels (Difference) similarly depict the difference in proportion of overlap as competition increased. 

Smoothed conditional means are shown for agents with medium resource thresholds; results for other thresholds were similar. 
 



established at a medium 

population density are predicted to 

have the least. This suggests that 

density of territories may increase 

most noticeably in areas colonized 

the earliest during wolf recovery 

in Montana. 

Competition is also predicted to 

affect each pack’s territory over 

time (Fig. 2.7). This could have 

implications for abundance 

estimates in POM, as continual 

competition for space could affect 

territory size and overlap year-to-

year. After establishing a territory, 

a pack’s territory size is generally 

predicted to decrease over time as competition increases. Where food resources are highly clumped, 

however, territory size is predicted to expand for a portion of packs. Whether a pack’s overlap with other 

territories increases or decreases is predicted to depend on the population density encountered at territory 

establishment. Packs that established territories at lower densities are predicted to have an increase in 

overlap over time, whereas the opposite is predicted for packs that established more recently.  

The predicted interactions between competition and food resources (Fig. 2.7) suggest the importance of 

accounting for both considerations when estimating territory size and overlap to calibrate POM. 

Additionally, it appears that the means by which competition is measured can affect inference (Fig. 2.9). 

Territory size is predicted to have an overall positive relationship with the number of competitors near a 

pack’s territory border. After scaling the number of competitors by territory size, however, this 

relationship is predicted to be negative. 

 

 

Figure 2.9. Results from phase one of the theoretical territory model. The relationship between territory size (# of 

patches) and the # of nearby competitors (those within a 25 patch radius of the territory border) varied depending on how 

this measure of competition was assessed (as a raw number, Panel A; or accounting for size of the territory, Panel B). 

Smoothed conditional means for a medium resource threshold are shown. 

 

 

 

Figure 2.8. Results from phase one of the theoretical territory model. Territory 

abundance at saturated population densities was affected by food distribution and 

abundance (Panel A) and predator abundance (Panel B).  

 



Effects of threshold  

If packs have sufficiently large differences in resources required for survival and reproduction, this could 

affect their territory size and overlap, which in turn could affect abundance estimates from POM. Packs 

with higher resource requirements are predicted to have larger territories with less overlap (Fig. 2.6). 

Logically, carrying capacity and resource requirements are predicted to be inversely related (Fig. 2.8). 

Effects of resource requirements are also predicted to interact with food distribution and abundance. For 

example, whether overlap is positively or negatively correlated with food abundance is predicted to 

depend on resource requirements (Fig. 2.6).  

Effects of predation risk  

Territories are predicted to vary with predator abundance (Fig. 2.10). This could affect abundance 

estimates from POM. If wolves experience varying levels of harvest pressure as changes in predator 

abundance, harvest pressure could produce variable effects depending on the food resources and 

competition wolves encounter in an area. The most noticeable effect, however, may be in overlap rather 

than in territory size. Where predator abundance is higher, overlap is predicted to be lower, especially 

where food resources are more clumped. In contrast, territory size is predicted to have either a slightly 

negative correlation with predator abundances or no relationship, depending on the population density, 

food distribution, and food abundance on the landscape. Carrying capacity is also predicted to be slightly 

lower where predator abundance is greater (Fig. 2.8), which suggests the state may be able to support 

fewer packs during eras of harvest management.  

 

Figure 2.10. Results from phase one of the theoretical territory model. Agents encountered a predator abundance of low – high 

on any given landscape. Results show territory size (# of patches) and overlap (the proportion of the territory belonging to >1 

agent) often varied in response to predator abundance, but territory overlap varied more strongly than did territory size. 

(Abundance of N = none, i.e., agents ignoring the cost of predation risk under 𝐻𝐵.)  

 

 

 



Preliminary tests of predictions 

Additional phases of this work involve testing the model’s predictions for wolves in Montana; however, 

we also conducted a literature search at the end of phase one to evaluate preliminary support for the 

model. The model’s hypotheses could apply to many species, so we reviewed the literature for any papers 

discussing patterns in territory size and overlap. We found that predictions from the model have been 

observed empirically in many taxa (Table 2.2). Additional tests of the theoretical territory model will 

occur in phases 2 and 3. 

Table 2.2. Predictions from phase one of developing the theoretical territory model, and evidence of support we identified in the 

literature, after developing the model. Because our hypotheses would be the same for many species, the predictions can be tested 

across taxa to determine support for the hypotheses. 

Prediction Observed empirically? Citations 

Mean territory size ↓ w/ ↑ food 

clumping (Fig. 2.6) 

Yes, in badgers (Meles meles) and dingos (Canis lupus 

dingo). 

Kruuk and Parish 1982, 

Newsome et al. 2013 

Mean territory size ↓ w/ ↑ food 

abundance (Fig. 2.6) 

Yes, in numerous species including mollusks, fish, 

lizards, birds, and mammals. Territory size was also 

reported to increase with latitude, where productivity is 

generally lower. 

Stimson 1973, Slaney and 

Northcote 1974, Simon 

1975, Hixon 1980, Smith 

and Shugart 1987, 

Gompper and Gittleman 

1991, Adams 2001, Mech 

and Boitani 2003,  

Jedrzejewski et al. 2007, 

Gillman et al. 2015, Kittle 

et al. 2015 

Mean territory overlap ↑ w/ ↑ 

food clumping (Fig. 2.6) 

Yes, in dunnocks (Prunella modularis).  Davies and Hartley 1996 

Mean territory overlap ↑ or ↓ 

w/ ↑ food abundance (Fig. 2.6) 

Unknown.
1
  

Mean territory size ↑ w/ ↑ 

competitors (Figs. 2.6-2.7) 

Inconclusive.
2
 Territory size in song sparrows 

(Melospiza melodia) was positively correlated with the 

number of competitor species, which researchers 

attributed to increased competition. In various species, 

population-level mean territory size was often reported 

to decrease rather than increase. Our predictions that 

territories often noticeably compress with increasing 

competitor pressure appear to align with these empirical 

observations and others showing that intruder pressure 

was negatively correlated with territory size. 

Yeaton and Cody 1974, 

Myers et al. 1979, Ewald 

et al. 1980, Stamps 1990 

Mean territory overlap ↑ with 

competition (Figs. 2.6-2.7) 

Yes, overlap increased at higher densities in various 

species. 

Reviewed by Stamps 

1990 

Individual territory size ↑ for 

later colonizers than earlier 

Unknown.
1 
  



colonizers (Fig. 2.7) 

Individual territory size 

generally compressed as 

competition continues to ↑ 

(Fig. 2.7) 

Yes, intruder pressure was negatively correlated with 

territory size in various species. 

Myers et al. 1979, Ewald 

et al. 1980, Stamps 1990 

Individual territory overlap ↑ 

or ↓ w/ ↑ competitors (Fig. 

2.7) 

Inconclusive
1
, insufficient details in literature.  

Territory abundance ↑ w/ ↑ 

food abundance (Fig. 2.8) 

Yes, predator biomass and abundance was shown to 

positively correlate with prey biomass. 

Stimson 1973, Slaney and 

Northcote 1974, Carbone 

and Gittleman 2002 

Territory size ↓ w/ ↑ # nearby 

competitors, after scaling by 

territory size (Fig. 2.9) 

Yes, wolf territory size decreased with each additional 

nearby pack after scaling by territory size.  

Rich et al. 2012 

Territory overlap ↓ w/ ↑ 

predator abundance (Fig. 

2.10) 

Unknown.
1
  

1. Patterns appeared to be less commonly reported in the literature; none were found for these predictions. 

2. Inconclusive support for these predictions could be due to insufficient data. We measured territory size including overlap, and 

its exclusion could generate the impression that population-level mean territory size decreases with increased density. Our 

predictions could also be correct yet difficult to fully detect empirically given the challenges of measuring what an animal 

selects and defends as its territory. If a low population density leads to fewer constraints and lower costs of competition, 

territories may appear large and nebulous in part as a result of exploratory movements, i.e., those beyond the defended 

territory. We measured territory size excluding exploratory movements, whereas it is difficult to know empirically what 

movements are exploratory. 

2.5 Territory Models: Phase 2 

Introduction 

Phase two of territory model is ongoing and involves developing a set of empirical territory models that 

summarize patterns in territory sizes of wolves in Montana. This will provide the opportunity to produce 

models to compare and contrast with the theoretical model. The empirical territory models will also 

enable testing the predictions from the theoretical model. Additionally, this phase provides an opportunity 

to build on past work. Rich et al. (2012) investigated patterns in territory size during years with limited or 

no harvest. If territorial behavior has changed under harvest, new empirical models will enable identifying 

these effects. 

Methods 

We are currently developing the empirical territory models. Efforts have focused on preparing wolf 

location data, estimating territory size and extent, preparing data for independent variables, and 

conducting univariate analyses. 



Preparing wolf location data 

Since 2014, MFWP has deployed GPS collars in packs across western Montana. Collar types were 

Telonics store-on-board collars (TGW-4400-3), Telonics Iridium collars (TGW-4483-3 and TGW-4577-

4), Lotek LifeCycle collars, and Lotek Iridium collars (Litetrack B 420). Collars were programmed to 

collect latitude and longitude every 3 – 13 hours for 2 – 5 years. Actual fix rates and collar life varied due 

to technological difficulties. We also gathered and used any preexisting datasets from GPS-collared 

wolves in Montana, including those from Rich et al. (2012) and as part of other research by MFWP.   

Collar deployment was conducted by MFWP using ground or aerial capture. Ground capture was 

conducted with foothold traps designed to reduce injury (EZ Grip # 7 double long spring traps, Livestock 

Protection Company, Alpine TX). Aerial capture was conducted by MFWP-contracted crews using 

helicopters and dart guns. Wolves were anesthetized and handled in accordance with MFWP’s biomedical 

protocol for free-ranging wolves (Montana Fish, Wildlife and Parks 2005) and guidelines approved by the 

American Society of Mammalogists (Sikes et al. 2011). 

We prepared wolf location data for analysis by defining whether each wolf was a resident or disperser at 

any given time. Separating these two statuses avoided over-estimating territory size, as dispersal indicated 

a wolf’s decision to change its territory. We mapped each wolf’s fixes and noted clusters of fixes. These 

clusters appeared as localized movements and were generally easily detectable. We defined dispersal as 

the wolf’s departure from the current cluster of fixes. Some dispersals were easily detectable, as the wolf 

left the cluster of its original territory in an outward trajectory and did not return. Alternatively, some 

wolves began making apparent forays, i.e., trajectories looping out of and back into the original cluster of 

fixes. These forays were often short-term (days or weeks), and tended to occur multiple times before the 

wolf either did not return, or made fewer or no new foray trips. If the wolf continued making at least one 

foray out of the cluster with <1 month between forays, we defined the wolf as a disperser beginning on 

the date of the first foray. If >1 month lapsed between forays, the wolf kept its status as a resident.  

Dispersing wolves were either successful (i.e., a new cluster of fixes indicated they had joined an existing 

pack or set up a new territory), or were killed while dispersing (e.g., by wolves, hunters, vehicle strikes, 

etc.). Once a disperser’s movements localized to a new cluster of fixes, we defined it as a resident. In rare 

cases, a wolf failed to generate an obvious cluster of fixes and appeared to possibly be nomadic, acting as 

a floater across and near many other known territory centroids. Also in rare instances, a resident wolf 

made sufficiently large forays to potentially greatly inflate their territory estimates, overlapping multiple 

other territory centroids. We noted our uncertainty in defining the territory boundaries for these wolves to 

enable running analyses with and without their data. 

Estimating territory sizes 

After preparing the wolf location data, we estimated territory sizes and locations using 95% volume-

adaptive kernel density estimates (KDEs; Worton 1989). To do so, we used Program R (R Core Team 

2018) with package AdehabitatHR (Calenge 2006), and set the smoothing parameter at 100% of the 

reference bandwidth. These methods slightly differ from Rich et al. (2012) who used a 90% kernel with 

80% of the reference bandwidth. Our methods appeared to produce reasonable estimates that avoided 

generating lacunas or disjoint areas without appearing to appreciably inflate the territory boundary.  



We estimated a KDE for the first year of data for each territory in which the wolf was a resident. We 

repeated these estimates for the second year of data where available. (A wolf that dispersed could have ≥ 

2 territories, and a wolf remaining >1 year could have multiple estimates of the same territory.) We 

considered each estimate to be a reliable estimation of an annual territory if fixes spanned ≥ 70% of a 

year. We censored wolves that emigrated out of Montana. Where an annual territory was represented >1 

year by a reliable estimate, we averaged results. We will repeat these steps to estimate seasonal territory 

sizes (i.e., winter, October 15 – April 14, and summer, April 15 – October 14) to also evaluate patterns in 

seasonal territories.  

We will update the GPS collar dataset before finalizing phase two. 10 collars remain deployed and 

functional, and 27 likely remain deployed but have malfunctioned. The functional collars should continue 

providing data in 2019, and the malfunctioning collars will provide additional data if found (i.e., via 

harvest or other mortality).  

Preparing data for independent variables 

Following Rich et al. (2012) and to test predictions from our theoretical models, our goal was to generate 

explanatory variables to represent prey resources, competition among neighboring packs, costs of travel, 

and risk of harvest by humans. Accordingly, the hypotheses in Section 2.4 also apply here. We completed 

the following steps in Program R (R Core Team 2018). 

To represent prey resources, we generated statewide spatial density indices for deer (Odocoileus 

virginianus and O. hemionus) and elk (Cervus canadensis). Because data were not available by deer 

species for some of the following steps, we created a single density index for deer. Contrasting Rich et al. 

(2012), we did not use CPUE alone to represent deer and elk abundance because CPUE is influenced by 

and does not account for social considerations, terrain, or cover (K. Proffitt and K. Podruzny, pers. 

comm.). Our indices make use of readily-available data and appear to reduce some of the issues of using 

CPUE alone. To create the indices, we delineated each species’ seasonal distribution by converting into 

raster format datasets of predicted suitable habitat for winter and summer (Montana Natural Heritage 

Program). We identified the most recent 10-year average estimates of each species’ abundance by MFWP 

region (fwp.mt.gov). We then calculated the area of each seasonal habitat in each region, and created a 

preliminary density index (PDI) by dividing the regional estimates of abundance by their estimated area 

of seasonal habitat. We assigned each raster cell its PDI. We then calculated the mean catch per unit 

effort (CPUE) from 2004 – 2017 for each hunting district (HD) by dividing the total harvest by hunter 

days, based on harvest estimates ( https://myfwp.mt.gov/fwpPub/harvestReports). We assigned CPUE to 

each raster cell (𝐶𝑃𝑈𝐸 𝑎𝑡 𝑐𝑒𝑙𝑙) delineated as seasonal habitat within the HD. We calculated the mean 

CPUE by region (𝐶𝑃𝑈𝐸 𝑟𝑒𝑔𝑖𝑜𝑛𝑎𝑙 𝑚𝑒𝑎𝑛). We calculated a revised density index as: 

𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝑖𝑛𝑑𝑒 =  𝐶𝑃𝑈𝐸 𝑎𝑡 𝑐𝑒𝑙𝑙 ÷ 𝐶𝑃𝑈𝐸 𝑟𝑒𝑔𝑖𝑜𝑛𝑎𝑙 𝑚𝑒𝑎𝑛  𝑃𝐷𝐼 

This slightly bolstered or reduced the index in HDs with higher or lower CPUE, which is assumed to be 

associated with abundance (Rich et al. 2012). We interpolated this index into parks and reservations (for 

which data were not available) through inverse distance weighting. We smoothed the index (reducing the 

effects of large changes across HD boundaries) by calculating a weighted moving window value of the 

cell’s nearest neighbors (a 5 × 5 km area). Finally, we measured the average of the summer and winter 

prey indices within each KDE. 



We calculated competition as the number of packs near each territory. We buffered each territory by 25 

km, and overlaid this area with the estimated centroids of nearby packs. Centroid data were prepared each 

year by MFWP, Idaho Fish and Game, and YNP (this larger extent was needed for packs near Montana’s 

border). We identified the number of neighboring centroids intersecting the wolf’s buffered territory, and 

used this value as an index to competition. As a second measure of competition controlling for territory 

size, we divided each KDE’s count of neighboring packs by its territory size and multiplied this value by 

1000 (Rich et al. 2012). This provided a means to estimate the change in territory size for each additional 

pack per 1000 km
2
 in territory size. 

We hypothesized that ruggedness affects travel costs for wolves. We modeled terrain ruggedness per km
2
 

as the Vector Ruggedness Measure (Sappington et al. 2007) using R package spatialEco (Evans 2018) and 

elevation data derived through package elevatr (Hollister and Shah 2017). We calculated the mean 

ruggedness within each KDE. 

We are currently developing datasets to represent risk of harvest by humans. We hypothesized that cover 

type influences risk of harvest, and classified each km
2
 as forested, open (e.g., sagebrush, grasslands, or 

barren areas), or human-dominated (e.g., cities or agricultural areas) based on existing vegetation type 

(LANDFIRE 2014). Because we hypothesized that roads may increase exposure to humans, we calculated 

the mean road density per km
2
 using the most recent TIGER road dataset (U.S. Census Bureau 2018). 

(We also hypothesized that low-use roads may decrease travel costs and therefore territory size.) We 

hypothesized that greater human density would correspond with risk of harvest, so estimated human 

density per km
2
 (U.S. Census Bureau). We also hypothesized that public lands would increase the risk of 

harvest by humans by providing greater hunter access than most private lands, so we classified each km
2
 

as public or private land. We will also prepare datasets for regional wolf hunting and trapping success 

rates, or additional datasets to represent risk of harvest by humans. We are calculating the average values 

of these indices within each KDE. 

Analyses 

Analyses are ongoing. We are using generalized linear models (GLMs) to identify patterns in territory 

size, similar to Rich et al. (2012). We are first running univariate analyses, the results of which we will 

use in phase three to evaluate support for predictions generated in phase one. We are considering p ≤ 0.05 

and omission of 0 from confidence intervals as indicative of strong support, and p ≤ 0.10 as indicative of 

potential support. After identifying correlation among covariates, we will build competing multivariate 

models that avoid pairing overly-correlated covariates in any single model. We will identify the most 

predictive multivariate model using Akaike’s information criterion (Burnham and Anderson 2002).  

Preliminary Results and Discussion 

GPS collar data and estimated territory sizes 

From January 2014 – January 2019, 95 wolves were captured and collared with GPS collars in 

conjunction with this research. 14 wolves were GPS-collared from 2008 – 2009 in conjunction with Rich 

et al. (2012)’s work. An additional wolf was GPS-collared in 2012 as part of other research in MFWP.  



We identified 144 annual territories whose boundaries were at least partially within Montana. Excluding 

territories with fixes spanning <70% of the year yielded 52 annual territories. Each remaining territory 

had 69 – 4278 fixes (   = 903.02, SE = 125.67). After averaging results for individuals with >1 year in the 

same territory, there were 45 unique territories. Of these territories, we identified 2 wolves as having 

uncertain territory boundaries due to large forays that were unlike behavior of other wolves in our dataset. 

We censored these 2 wolves from univariate analyses. 

Mean annual territory size of all 45 territories was 649.86 km
2
 (SE = 73.76 km

2
, range 187.71 – 2479.91 

km
2
). After censoring the 2 wolves with uncertain boundaries, mean size was 579.75 km

2
 (Fig. 2.11; SE = 

56.71 km
2
, range 187.71 – 2207.42 km

2
). Estimates did not vary as a function of number of fixes (p = 

0.936). 

Preliminary univariate analyses 

Territory size had a negative relationship with several measures of prey abundance. This supports our 

hypothesis that food resources will affect territory size. For every 1-unit increase in the deer summer 

density index, annual territory size decreased by 16.17% (95% CI = −1.596 – 30.833, p = 0.080; 90% CI 

= 1.496 – 28.662). Similarly, each 1-unit increase in the deer winter density index led to an 8.30% decline 

in territory size (CI = 1.428 – 14.695, p = 0.024). Combining the indices for deer and elk, each 1-unit 

increase in the summer or winter density index led to a decline in territory size of 19.88% (CI = 0.849 – 

35.271, p = 0.048) and 9.73% (CI = 4.266 – 14.891, p = 0.001), respectively. Territory size did not vary 

in relation to the elk indices alone (p > 0.10). 

 

Figure 2.11. Estimated territory sizes (km2) of 43 GPS-collared wolves in Montana, 2008 – 2018 (after censoring 2 wolves with 

uncertain boundaries). The blue dashed line demarcates the mean territory size (579.75 km2). Results will be used in phases two 

and three of developing the territory models. 

 



Territory size had a positive or negative relationship with competition, depending on how competition 

was measured. This supports our hypothesis that competition will affect territory size. For every 

additional pack centroid ≤ 25 km of a wolf’s territory boundary, territory size increased by 12.48% (CI = 

6.618 – 18.665%, p = <0.001). Territory size decreased by 5.01% (CI = 3.099 – 6.891%, p = <0.001), 

however, for each additional nearby centroid per 1000 km
2
 in territory size. We also noted that territories 

compressed in 8 out of the 11 instances that territory estimates were available across multiple years.  

Univariate analyses did not reveal evidence of a relationship between territory size and ruggedness, cover 

type, human population density, or land ownership (p > 0.10). Territory size decreased by 22.80% for 

every additional road per km
2
 (CI = −1.154 – 41.080, p = 0.067; 90% CI = 3.147 – 38.464). This could 

support our hypothesis that roads decrease travel costs; as a next step, we will differentiate roads as high- 

or low-use to further evaluate these results. Additional work is ongoing to finalize a layer to represent the 

cost of predation risk for wolves.  

2.6 Territory Models: Phase 3 

Introduction 

Phase three of the territory models is ongoing and provides the final development, analysis, and 

comparison of the theoretical and empirical models. This will enable us to prepare final tools that can be 

used to calibrate POM, and recommendations for when each application may be most appropriate.   

Methods 

Phase three involves multiple steps, the first of which is a comparison of the predictions from phase one 

with the empirical results from phase two. This will enable discerning the theoretical model’s predictive 

power and potential weaknesses. 

To further evaluate the theoretical model, we will use it to predict size and overlap of wolf territories in 

Montana by adding data to the simulations. Using the data we prepared in phase two (i.e., deer and elk 

indices, terrain ruggedness, and human influence), we will re-create the landscape to represent Montana. 

We will run new simulations to predict size, overlap, and variation in wolf territories across Montana 

(e.g., measuring territory size in km
2
 rather than # of patches). We will summarize results in figures 

similar to those from phase one and further compare the theoretical model’s predictions to the results 

from phase two. We will also identify the theoretical model’s capacity for producing spatially-explicit 

predictions. To do so, we will compare predicted locations of territories to those estimated for GPS-

collared wolves (Section 2.5) and locations of cells estimated by POM as occupied. Although the ability 

to make spatially-explicit estimates of territory locations is not necessary for calibrating POM, this could 

also be useful and increase our understanding of wolf behavior and abundance.  

The final steps of phase three will be a formal comparison of the theoretical and empirical models, and 

recommendations for their use in POM. We will use each to predict territory sizes in Montana, and 

contrast their results to identify areas of agreement, disagreement, and uncertainty. We will then provide 

demonstrations and advice for when and how to use each in POM. 

  



Preliminary Results and Discussion 

Univariate analyses from phase two (Sect. 2.5) appear to support the theoretical model’s predictions from 

phase one (Sect. 2.4). As predicted (Fig. 2.6), greater food abundance was associated with significantly 

smaller territory sizes for wolves in Montana. Territory size did not vary in relation to the elk indices 

alone. This could indicate more work is needed in developing these indices, or the elk indices simply are 

not predictive on their own; multivariate analyses will reveal if this is true. As predicted by the theoretical 

model (Fig. 2.7 & 2.9), territory size of wolves in Montana had either a positive or negative relationship 

with competition, depending on how competition was measured. Additionally, the theoretical model 

predicted predator abundance would not strongly affect territory size (Fig. 2.10); we found no significant 

relationship between territory size and our measures for predator abundance. 

In preparation for its final simulations, we have prepared and added data from phase two to the theoretical 

model. Preliminary simulations demonstrate that the model predicts territories will occur in 

approximately the same areas in Montana as occupied by existing packs (Fig. 2.12). Final simulations 

will begin shortly, after which we will summarize final results. These will provide estimates for how 

territory size and overlap will vary under a wide array of circumstances.  

No further simulations with the theoretical model will be necessary after completion of phase three. For 

example, results will estimate territory size and overlap in specific areas of the state based on relative 

levels of harvest and characteristics of local ungulate populations (e.g., Fig. 2.13). We will produce 

estimates from the empirical model, as well. These estimates could be made spatially explicit by linking 

them to the grid used by POM. Estimates of territory size and overlap can then be used in POM to 

estimate abundance at both the state level and finer spatial scales (e.g., within each MFWP region).  

 

Figure 2.12. At left, a demonstration of the spatial predictions that can be generated in phase three of the territory model. 

Patches not part of territories are brown (or blue, where there are large lakes or reservoirs). Agents and their territories 

(representing different packs) range in color. Black patches between territories indicate overlap. We will compare how well 

real wolf territories and occupancy estimates for Montana align with model predictions from POM (at right; red indicates 

highest occupancy probability, green lowest). 

 



The territory model’s estimates 

will also be incorporated into the 

adaptive harvest management 

model (Study Objective #3) to 

predict future abundance of packs 

if various management actions 

were implemented. Results from 

the territory models will 

demonstrate how territorial 

behavior and total abundance could 

potentially be affected, e.g., by 

manipulating the distribution or 

abundance of ungulates, or 

increasing or decreasing harvest 

pressure (e.g., through higher or 

lower bag limits).  
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APPENDIX A. THEORETICAL TERRITORY MODEL SELECTION ALGORITHM 

For each simulation, the model cycled through a series of processes (Fig. 2.4) through which territories 

and competition among agents emerged on the landscape, as follows: 

1. Setup landscape: a landscape configuration, threshold of resources (𝑉𝑇), and patch-value 

algorithm (below) was specified. 

2. Start new agent: a new agent 𝐴𝑖 was added to the landscape and encountered resident agents 𝐴𝑅 

(those with territories; Σ𝐴𝑅 = 0 when a simulation began). An Σ𝐴𝑅 = 10 represented a low density 

population.  

3. Pick territory center: 𝐴𝑖 was moved to the patch with the highest center value index (𝑉𝑖𝑛𝑑𝑒𝑥). A 

patch n’s 𝑉𝑖𝑛𝑑𝑒𝑥 = 0 if any patches in radius ≤ 4 were owned by competitors (approximating the 

cumulative cost of competition likely to be encountered nearby; Sect. 2.4); otherwise 𝑉𝑖𝑛𝑑𝑒𝑥 was 

the sum of the approximate value of patches 1 – x in radius 𝑉𝑇   0.15: 

𝑉𝑖𝑛𝑑𝑒𝑥 = ∑ 𝐵 − 𝐷  0.01 − 𝑃  0.1𝑥
1   

where 𝐷 was the distance of patch x from patch n.  

4. Calculate patch values: the value of each patch (𝑉𝑛) relative to 𝐴𝑖’s territory center was 

determined using the patch-value algorithm (details below) defined in Process 1. 

5. Establish territory: patches were added to 𝐴𝑖’s territory in order of 𝑉𝑛 until 𝛴𝑉𝑛 ≥ 𝑉𝑇.  

6. Check center: if 𝐴𝑖’s current territory center ≠ the territory’s geographic center (i.e.,    and �̅� 

coordinates of 𝐴𝑖’s patches), 𝐴𝑖’s current territory was discarded, 𝐴𝑖 was repositioned to this 

geographic center, and proceeded from Process 4. If the territory center = its geographic center, 

𝐴𝑖 proceeded to Process 7. 

7. Summarize territory: 𝐴𝑖’s territory size (total space used, i.e., # of patches selected + travel 

corridors to selected patches), overlap (proportion of the selected territory shared with >1 agent), 

competitor pressure (Σ𝐴𝑅 at territory establishment), and the landscape’s territory abundance was 

calculated.  

8. Assess territory overlap: details about increases or decreases in overlap with neighbors was 

assessed and stored for each 𝐴𝑅, until it was their turn to proceed to Process 9. 

a. If any agents remained queued, one agent proceeded to Process 9 as the new focal 𝐴𝑖. 

b. If no agents remained queued,  

i. if the landscape was not saturated (sufficient resources remained for additional 

agents to form territories), Process 2 was initiated. 

ii. if the landscape was saturated, Process 10 was initiated. 

9. Update territory: the new focal 𝐴𝑖’s territory was discarded and 𝐴𝑖 proceeded from Process 4 to 

account for changes in the cost of competition imposed by neighbors. 𝐴𝑖’s territory was shifted if 

patches formerly selected had become uneconomical, or patches formerly ignored had become 

economical (e.g., due to < competition for those patches). Effects of competition were thus 

dynamic (i.e., changing continuously throughout a simulation) and density dependent. 

10. End simulation: once the landscape was saturated (e.g., Fig. 2.5), the simulation ended. Final 

territory size and overlap was recorded for 𝐴𝑅, representing the results at a saturated population 



density. The total abundance of territories was recorded, representing the landscape’s carrying 

capacity. 

We designed 2 patch-value algorithms for use in Process 4. During territory selection, all agents 

used the same algorithm to assess 𝑉𝑛: 

𝐴𝐵 (representing 𝐻𝐵): 𝑉𝑛 = 𝐵 − 𝐶𝛴 − 𝑇𝛴. 

𝐴𝑃 (representing 𝐻𝑃): 𝑉𝑛 = 𝐵 − 𝐶𝛴 − 𝑇𝛴 − 𝑃𝛴. 

𝑉𝑛 was the benefit of food (𝐵) on patch n discounted by cumulative costs to reach it, representing the 

average costs that would be encountered to reach patch n from any patch in the territory (Mitchell and 

Powell 2004): 

1. Cumulative cost of competition (𝐶𝛴): because competitors are more likely to be encountered with 

each patch trespassed and likely to respond more aggressively the further inward a trespasser 

intrudes (Vines 1979; McNicol and Noakes 1981; Giraldeau and Ydenberg 1987; Eason 1992; 

Adams 2001), 𝐶𝛴 was the local cost of competition (𝐶𝑙𝑜𝑐𝑎𝑙) accrued between 𝐴𝑖’s territory center 

and patch n: 

𝐶𝛴 = ∑ 𝐶𝑙𝑜𝑐𝑎𝑙
𝑛
1 , where 𝐶𝑙𝑜𝑐𝑎𝑙 = 𝑁𝑡𝑒𝑟𝑟𝑖𝑡𝑜𝑟𝑖𝑒𝑠 𝑐𝑙𝑎𝑖𝑚𝑖𝑛𝑔   0.1, 

where 𝑁𝑡𝑒𝑟𝑟𝑖𝑡𝑜𝑟𝑖𝑒𝑠 𝑐𝑙𝑎𝑖𝑚𝑖𝑛𝑔 = # of other territories claiming the patch. 

2. Cumulative cost of travel (𝑇𝛴): 𝑇𝛴 accounted for 𝐷 (the # of patches between the territory center 

and patch n): 

𝑇𝛴 = 𝐷  0.01.  

3. Cumulative cost of predation risk (𝑃𝛴): 𝑃𝛴 was the sum of the local cost of predation risk (𝑃𝑙𝑜𝑐𝑎𝑙) 

between 𝐴𝑖’s territory center and patch n, representing the increased chance of encountering 

predators for each patch crossed with predation risk: 

𝑃𝛴 = ∑ 𝑃𝑙𝑜𝑐𝑎𝑙
𝑛
1 , where 𝑃𝑙𝑜𝑐𝑎𝑙 = 𝑃  0.1. 
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OBJECTIVE 3: DEVELOP ADAPTIVE HARVEST MANAGEMENT FRAMEWORK—Allison 

Keever, Project 2 

3.1 Introduction 

Harvest is an important management tool for gray wolves in Montana. Harvest regulations for wolves are 

evaluated biennially and can be updated as needed dependent on the status of the population and 

objectives for management. Decisions on harvest regulations for wolves can be challenging, however, due 

to conflicting objectives from various stakeholder groups and uncertainties in the effects of harvest on 

wolf population dynamics. 

Conflicting opinions on values of wolves and management among stakeholders (including livestock 

producers, hunters, tourists, and wolf conservation groups) make management decisions difficult. Federal 

and state agencies have legal requirements to manage the wolf population, and the Commission-approved 

Montana Wolf Conservation Strategy stipulates that MFWP will maintain a minimum of 15 breeding 

pairs and 150 wolves to have a regulated, public harvest season. Ungulate hunters have concerns that 

wolves affect prey populations and compete with hunters for ungulates (Ericsson and Heberlein 2003). 

Livestock producers can suffer losses due to depredation events. Wolves also benefit the tourism industry 

(e.g., visitors to the region to view wolves), and conservation groups use that information to demonstrate 

the economic benefit of wolves (Defenders of Wildlife 2013).  

A further challenge in managing wolves is uncertainty in effects of harvest on population dynamics. This 

uncertainty can stem from 2 factors. First, managers cannot directly control harvest rate, because changes 

in harvest regulations do not directly change harvest rates. For example, increasing the bag limit from 1 to 

5 wolves does not mean that harvest rate would increase five-fold, or even at all. Harvest rates vary based 

on many factors, including weather, hunter and trapper effort, hunter and trapper success, and regulations. 

Second, there is uncertainty in the effects of harvest on demography. There is not consensus for how 

harvest affects wolves (Fuller et al. 2003; Adams et al. 2008; Creel and Rotella 2010; Gude et al. 2012). 

Substantial variation occurs in the reported level of harvest wolf populations can sustain before growth 

rate decreases (Fuller et al. 2003; Adams et al. 2008; Creel and Rotella 2010; Gude et al. 2012) which 

could result in management actions not reaching objectives.  

Despite uncertainty in the effects of harvest and the conflicting objectives and values of stakeholders 

MFWP must still make recommendations for harvest regulations of wolves. This can be challenging, 

however, without a formal process. 

Adaptive harvest management (AHM) provides a framework to clarify decisions while reducing 

uncertainty to identify the optimal strategies to meet objectives (Walters 1986, Williams et al. 2009). 

AHM is an extension of structured decision making (SDM; Hammond et al. 1999) when decisions are 

iterated over time or space and outcomes are uncertain. Much like SDM, AHM requires clearly defined 

objectives, alternative management actions, and a model to predict outcomes of actions and evaluate 

tradeoffs. An essential component to AHM is a monitoring program to determine the system state (e.g., 

population size), reduce uncertainty, and learn over time. Learning is the reduction of uncertainty and 

occurs when there are multiple hypotheses about how a system works, represented as multiple models 



 

Figure 3.1. Adaptive harvest management cycle. The optimal state-dependent (i.e., 

population size dependent) harvest strategy is based on objectives, alternatives, the 

population models, and their relative support. After management is enacted, the 

response of the population is monitored and compared to predictions from the 

population models. Based on comparisons, model support is updated and uncertainty 

reduced.  

 

 

each with some probability of being the best model. These model probabilities can be updated by 

comparing model predictions to monitoring data and provide evidence in favor of a hypothesis over 

others. When a hypothesis gains support, uncertainty is reduced and the updated models can be used to 

make predictions. Future decisions can be improved because the updated models would be more 

predictive.  

3.2 Sub-Objectives of Objective #3 

To address the challenges associated with managing wolves in Montana we will develop an AHM 

framework that relies on meeting 4 sub-objectives:  

1. Collaborate with MFWP to determine their objectives and alternative harvest regulations. 

2. Evaluate relationship between harvest regulations and rate. 

a. Improve understanding of variation in harvest rate. 

b. Account for uncertainty in relationship between harvest regulations and rate. 

3. Incorporate POM (Study Objective #2): Predict abundance under alternative harvest 

regulations. 

4. Develop AHM framework. 

a. Determine optimal harvest strategies. 

b. Reduce uncertainty. 

Meeting these sub-objectives (with Study Objectives #1 and #2) will contribute to meeting Study 

Objective #4, developing a 

targeted monitoring program.  

3.3 General Approach 

Our goal is to develop an AHM 

framework for wolves to help 

inform current decisions while 

reducing uncertainty in the 

effects of harvest to improve 

future decisions. AHM follows a 

general cycle: 1) Determine 

optimal harvest strategies 

dependent on objectives, 

alternatives, current status of the 

population, and the competing 

models (hypotheses) and their 

associated model probabilities of 

being supported, 2) Enact optimal 

harvest strategy (or another 

option following evaluation of 

tradeoffs), 3) monitor changes in 

population size, and 4) compare 



Table 3.1. Dates, locations, and attendees for each of the regional meetings to discuss 

objectives and alternative actions for wolf management.  

 

Region Date Location Attendees 

Region 1 11/2/18 Kalispell, MT N. Anderson, D. Boyd, T. Their, T. 

Manley  

Region 2 10/18/18 Missoula, MT M. Thompson, B. Jimenez, E. Bradley, 

T. Parks, J. SunderRaj, R. Mowry, S. 

Eggeman 

Region 3 10/29/18 Bozeman, MT H. Berk and B. Inman 

Region 4 9/26/18 Great Falls, MT G. Taylor, B. Lonner, R. Rauscher, and 

T. Smucker 

Region 5 1/8/19 Billings, MT A. Nelson, M. O’Reilly, A. Taylor, B. 

Beck, S. Stewart, T. Smucker, J. Paugh, 

and K. Kembel 

Region 6 9/27/18 Glasgow, MT S. Thompson and M. Sullivan 

 

monitoring data to model predictions to update model probabilities. The cycle then continues again 

(Figure 3.1).  

Work is in progress to determine objectives and alternative harvest regulations with MFWP (detailed 

below). We will have draft objectives and alternative harvest strategies by April 2019.  

3.4 Objectives and Alternatives 

Introduction 

Objectives for wolves were developed by MFWP representatives during a structured decision making 

(SDM) workshop in 2010. The working group focused on including objectives of the different 

stakeholders. These objectives included:  

1. Maintain positive and effective working relationships with livestock producers, hunters, and other 

stakeholders 

2. Reduce wolf impacts on big game populations 

3. Reduce wolf impacts on livestock 

4. Maintain hunter opportunity for ungulates 

5. Maintain a viable and connected wolf population in Montana 

6. Maintain hunter opportunity for wolves 

7. Enhance open and effective communication to better inform decisions 

8. Learn and improve as we go 

9. Increase broad public acceptance of harvest and hunter opportunity as part of wolf conservation 

10. Gain and maintain authority for the state of Montana to manage wolves  

Methods 

These objectives have been guiding management decisions for wolves since 2010 and have been adopted 

by the Montana Fish and Wildlife Commission as part of every public harvest season since that time. To 

determine if these objectives describe what is most important for wolf management in Montana, we met 

with MFWP supervisors, wildlife managers, wolf specialists, and regional biologists September 2018 and 

January 2019 (Table 3.1).  

We asked attendees whether 

stated objectives captured 

what was important for wolf 

management and were still 

relevant. We documented 

opinions and revisions of 

existing objectives and 

documented new objectives.  

There were several  

alternative actions proposed 

for wolf management.  



Method type (rifle, bow, and trapping), season length (for each method or total), hunter and trapper 

permits, and the number and location of wolf management units (WMUs) have been proposed, however 

other actions may be included after further collaboration. We asked attendees their opinions and revisions 

to the harvest regulations along with 2 hypothetical questions to determine if existing regulations were 

sufficient: 1) if the population was low then how would you change regulations to increase the 

population, and 2) if the population was high how would you change regulations to decrease the 

population.   

Preliminary Results and Discussion 

The objectives that were developed in 2010 appear to still capture what is most important for wolf 

management and what is perceived to be important to the various stakeholders. We will finalize a draft of 

objectives and alternative regulations with MFWP by April 2019.  

Overall, attendees in the different regions believed the objectives developed in 2010 for wolf management 

were still appropriate. Minor edits/rewording and the addition of a few objectives were suggested. The 

additional objectives mainly focused on values of non-consumptive stakeholders. We highlight some 

examples below.  

It was suggested that objectives 2 (reduce wolf impacts on big game populations) and 4 (maintain hunter 

opportunity for ungulates) were related and could be reworded and combined. It was also suggested that 

objective 6 (maintain hunter opportunity for wolves) be updated to include trapping, or be combined by 

saying “harvest.” There were similar minor edits suggested for other objectives as well. Suggested 

rewording for objective 9 (increase broad public acceptance of harvest and hunter opportunity as part of 

wolf conservation) was to focus more on conservation and management in general: increase public 

acceptance of wolf management and conservation. 

Overall, attendees believed that the harvest regulations available (e.g. permits or season length) were 

sufficient for management. No new tools were suggested to supplement those already available. In 

general, changes to season length and number of permits were suggested to alter harvest rate.  

3.5 Next Steps 

After the 2018-2019 harvest season for wolves is complete, we will begin work on sub-objective 3. 

Harvest rate is dependent on hunter and trapper effort and success. Effort and success could be affected 

by many factors, including method type, season length, distance to roads or road density (Person and 

Russell 2008), amount of public, weather, or land cover type. We will build predictive models of harvest 

rate based on data of hunter and trapper effort and success rate using linear models (e.g., GLM or 

GLMM) in a Bayesian analysis to determine a posterior distribution of harvest rate dependent on 

regulations. The posterior distribution of harvest rate can be used instead of using a constant harvest rate 

based on regulations to account for uncertainty. 

We will use the objectives and alternatives from sub-objective 1 and POM, territory models, and group 

size models (Study Objective #2) in the AHM framework. POM will be used to predict the wolf 

population response to harvest regulations under multiple hypotheses represented as competing models. 

We will posit hypotheses of how harvest affects occupancy, territory size, or group size (based on Study 



Objective #2), and the competing models and associated uncertainty with estimates can be reduced over 

time. Therefore, the harvest model from sub-objective 3 will be used to predict harvest rate given 

regulations. Outputs from POM includes number of wolves and number of packs which will be used to 

determine the effect of the harvest regulations on meeting objectives (after objectives are completed).  

Monitoring should focus on the critical uncertainties that impede effective management. In some 

instances, reducing uncertainty does not affect decisions (e.g., Smith et al. 2013), and may not be worth 

the cost of collecting the data. The expected value of information (Raiffa and Schlaifer 1961; Runge et al. 

2011; Williams et al. 2011), which represents the increase in effectiveness of management expected if 

uncertainty were reduced, can be used to help prioritize monitoring efforts. We will conduct a sensitivity 

analysis (Clemen and Reilly 2001) to determine the influence of model components on the harvest 

decisions. We will also use the value of information (Raiffa and Schlaifer 1961) to determine the 

uncertainties to reduce to improve management decisions. This and models and results from Study 

Objective #1 and #2 will allow us to design a targeted monitoring program.  
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